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Delay-induced multistable synchronization of biological oscillators

U. Ernst, K. Pawelzik, and T. Geisel
Institut für Strömungsforschung und Sonderforschungsbereich 185 ‘‘Nichtlineare Dynamik,’’ Bunsenstraße 10,

37073 Go¨ttingen, Germany
~Received 10 October 1996; revised manuscript received 12 August 1997!

We analyze the dynamics of pulse coupled oscillators depending on strength and delay of the interaction. For
two oscillators, we derive return maps for subsequent phase differences, and construct phase diagrams for a
broad range of parameters. In-phase synchronization proves stable for inhibitory coupling and unstable for
excitatory coupling if the delay is not zero. If the coupling strength is high, additional regimes with marginally
stable synchronization are found. Simulations withN@2 oscillators reveal a complex dynamics including
spontaneous synchronization and desynchronization with excitatory coupling, and multistable phase clustering
with inhibitory coupling. We simulate a continuous description of the system forN→` oscillators and dem-
onstrate that these phenomena are independent of the size of the system. Phase clustering is shown to relate to
stability and basins of attraction of fixed points in the return map of two oscillators. Our findings are generic
in the sense that they qualitatively are robust with respect to modeling details. We demonstrate this using also
pulses of finite rise time and the more realistic model by Hodgkin and Huxley which exhibits multistable
synchronization as predicted from our analysis as well.@S1063-651X~98!09902-4#

PACS number~s!: 87.10.1e, 05.45.1b
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I. INTRODUCTION

Synchronization of coupled oscillators is a quite comm
and elementary phenomenon in many different discipli
such as physics@1–3#, chemistry@4#, and biology@5#. In the
recent years, this topic has gained increasing attention
synchronous oscillations have been observed in the vi
cortex @6,7,50#, which were related to Gestalt properties
the stimulus. It has been pointed out that synchronous fi
activity may be a part of higher brain functions and a meth
for integrating distributed information in an abstract rep
sentation@8,9#. Besides the question of the functional role
synchronization, the mechanisms that lead to this collec
behavior were of central interest.

Abstracting from biophysical details, neurons and oth
biological oscillators have been modeled as phase oscilla
with an instantaneous sinusoidal phase coupling, and co
tive phenomena such as synchronization have been fo
@3#. This elementary approach has been somewhat gen
ized to account for more realistic situations by choosing
different interaction function whose shape was determi
by the underlying biophysical model, in the case of neuro
e.g., the Hodgkin-Huxley neuron@10#. The higher Fourier
modes of these modified functions are known to give rise
phase clustering of the oscillators@11–14#. Furthermore
negative coupling has been shown to be important for s
chronization@15–17#.

However, two problems arise in this context. Every b
logical system has to deal with substantial delays that se
heuristically speaking, to constrain the process of synchr
zation. Nevertheless, the brain manages this problem
even synchronizes neurons across long distances@18#. Sec-
ondly, real neurons do not interact continuously but inste
exchange pulses at certain times.

A key work about the origins and mechanisms of sy
chronization which accounts for the pulselike interaction w
the analysis of Mirollo and Strogatz@19#. They proposed a
571063-651X/98/57~2!/2150~13!/$15.00
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model whose amplitudef (F), in the case of neurons th
membrane potential, is a smooth function, which is conc
down and depends on the timeF since the last activation. A
prototype of this system is a leaky integrate-and-fire osci
tor,

ḟ 52c1f 1c2 with c2.c1 . ~1!

If f reaches a threshold, the neuron emits a pulse andf is
reset to zero, while all the other oscillators in the netwo
increment their amplitudes by an amounte ~excitatory cou-
plings!. These conditions always lead to stable in-phase s
chronization of the whole network.

In this paper, we investigate the effects of nonzero del
on such oscillators, and we include also inhibitory couplin
In Secs. II and III, we present a complete mathemati
analysis for pairs of two Mirollo-Strogatz-type oscillators f
a wide range of delayst and coupling strengthse, which
necessitates a set of intricate case distinctions. We explic
construct fire maps and return maps, and reveal the exist
and stability of all fixed points. For inhibitory couplings,
turns out that the presence of delays can lead to stable
phase synchronization. For excitatory couplings, we only
out-of-phase synchronization because in-phase synchron
tion proves to be not stable. Considering higher coupl
strengths, the existence of marginal stable regimes for s
chronization is shown. These results are summarized in
IV.

In the numerical part of this paper, beginning with Sec.
we examine the behavior of populations ofN.2 up to N
→` neurons, which we have simulated numerically. In a
dition to our previous results, we observe multistable ph
clustering for inhibitory couplings, and the spontaneo
emergence and decay of synchronized neuronal clusters
excitatory couplings. In Sec. VI, we derive a continui
equation for the dynamics in the limit ofN→` neurons that
shows that our results do not depend on the system’s siz
order to demonstrate that most of our results do not only r
on abstract pulse-coupled oscillators, but also do apply
2150 © 1998 The American Physical Society
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57 2151DELAY-INDUCED MULTISTABLE SYNCHRONIZATION . . .
real neurons, we simulate in Sec. VII the more detailed n
ron model of Hodgkin and Huxley@20#; and we show that
the phenomena found in the simple Mirollo-Strogatz mo
are preserved in this realistic framework.

II. MODEL

The network consists ofN relaxation oscillators, which
are caricatures of real pulse-coupled neurons in biolog
systems@19#. Each oscillatori may be described by a smoo
function f (F i), which is concave down and monotonical
increasing@ f 8.0, f 9,0, f (0)50, f (1)51#. f plays the
role of an amplitude~e.g. the membrane potential! and F i
P@0,1# is a phase, which in the case of vanishing input fro
other oscillators corresponds to the normalized time elap
since the last firing ofi . When f reaches the thresholdf s
:51, the oscillator fires andF i and f are reset to zero. Afte
a time delayt5t, tP]0,0.5@ , the spike reaches all the othe
oscillators ~no self-interaction! and raises~excitatory cou-
plings! or lowers~inhibitory couplings! their amplitudes by
an amounte5 ē (N21)21, where ē denotes the normalize
coupling strength (ē P#0,1]). The coupling to the oscillator
j may be represented equivalently by an increase or decr
in phaseDF j ~Fig. 1!

F j1DF j5 f 21
„min@ f ~F j !1e,1#…:5F1~F j ,e!, ~2!

F j1DF j5 f 21
„max@ f ~F j !2e,0#…:5F2~F j ,e!, ~3!

where Eqs.~2! and~3! refer to excitatory and inhibitory cou
pling, respectively. We point out that the concavity off is
responsible for the dependence ofDF j on F j , the larger the
phaseF j , the larger the phase shiftDF j ~Fig. 1!.

Before we treat a pair of these oscillators in a mathem
cal analysis, we note some simple properties of the functi
F2 andF1 introduced in Eqs.~2! and~3! that we will need
in the next paragraph:

A1: F1(F,e).F for F,1.
A2: F2(F,e),F for F.0.
A3: F1(c1F,e)2F1(c2F,e).(c1F)2(c2F)

52F for c2F.0 andF1(c1F,e),1.
A4: 0,F2(c1F,e)2F2(c2F,e),(c1F)2(c2F)

52F for c1F,1 andF2(c2F,e).0.
A5: f (F2)2 f (F1). f (F21a)2 f (F11a) if F1,F2,

a.0, f 8.0, and f 9,0.

FIG. 1. Functionf (F) and the dependence of the phase shift
F. With excitatory couplings, an increase ofe in the amplitudef
corresponds to a shift of phase that is larger when starting wi
larger phase (DF2.DF1). A negative phase shiftDF3 occurs
with inhibitory couplings.
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A6: f (F181a8)2 f (F182a8). f (F281a8)2 f (F282a8)
follows directly from A5 with F185F11a/2, F285F2

1a/2, anda85a/2.
A7: F1(F2 ,e)2F2.F1(F1 ,e)2F1 or, more compact

DF2.DF1 if 0 ,F1,F2, f 8.0, f 9,0, and F1(F2 ,e)
,1.

III. MATHEMATICAL ANALYSIS

In this section, we will derive phase diagrams that allo
one to determine if and how two oscillators synchronize th
activities. Speaking in mathematical terms, the repellors
attractors of the dynamics have to be found. We hereby c
sider a systemS of two oscillatorsA and B, both either
inhibitorily or excitatorily coupled together with time dela
t. Let us first introduce some basic definitions for our ana
sis.

To extract the asymptotic behavior ofS, we keep track of
the evolution of the phase difference between the oscilla

DF i , j~ t !:5@11F j~ t !2F i~ t !# mod1, ~4!

which is calculated each timetp,i (pPN, i P$A,B%) S
reaches a ground state, GS. A state is called GS if oscill
i has just fired itspth time, and if its phase is zero. W
additionally demand that, if the other oscillator’s pha
F j (tp,i),t, j must have fired attp,i2F j . This second con-
dition is not necessary in a mathematical sense, but ma
the analysis easier by reducing the number of case dist
tions. Note that the phase difference in a GS is by definit
DF i , j (tp,i)5F j (tp,i)2F i(tp,i)5F j (tp,i)5:Fp,i . Now, we
are able to define a firemap and a return map, similiarly a
@19#.

~i! Firemap h: Fp,i→Fq, j : Fq, j5h(Fp,i) with tq, j
5minrPN,kP$A,B%$t r ,kut r ,k.tp,i%.

~ii ! Return mapR: Fp,i→Fp11,i : Fp11,i5R(Fp,i) R
maps the phase differenceFp,i when i fires onto the phase
differenceFp11,i when i fires again.

The dynamics ofS does not depend smoothly on the in
tial phase differenceF:5Fp,i and the coupling strengthe,
and must therefore be described by sets of different eq
tions. This is due to the nonvanishing delayt and the ab-
sorption at threshold@e.0, min condition in Eq.~2!# or at
zero level off @e,0, max condition in Eq.~3!#. As the main
parameters are the initial phase differenceF and the cou-
pling strengthe, our strategy is to divide the (F,e) phase
space into disjunct domains, which we treat separately, le
ing to a single explicit form ofh in each of them. In the fina
analysis, these firemapsh have to be combined together t
determine the long-term behavior ofS.

Before we begin the analysis of the different cases
configurations of the dynamics, we want to illustrate our m
tivation for our choice of intervals in the subspace of init
phase differencesF. Let us consider thatS is a GS with
oscillatorA just being reset toFA50 such thatF5FB . In
a first intervalI1, both oscillators have fired, but their spike
did not reach their destination yet. Therefore, the con
quences of the two pulses being received have to be ev
ated. In a second intervalI2, only the spike of oscillatorA
did not reachB and has to be taken into account. In a thi
interval I3, oscillatorB will reach the threshold before th
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2152 57U. ERNST, K. PAWELZIK, AND T. GEISEL
spike ofA can be received. These considerations lead to
following definitions forI1, I2, andI3:

I1: Fk,iP@0,t@ ,

I2: Fk,iP@t,12t#,

I3: ~Ex0,In0!: Fk,iP ]12t,1].

On the one hand, the dynamics is very simple if we
looking at domainI3. After a timet512F ~from here on,
we identifyt with the time elapsed sinceS has been in a GS!,
S will be in a GS with FB50, which leads to a firemap
h(F)512F. Additional case distinctions are not require
here, andI3 will be referenced as region Ex0~for excitatory
couplings! or In0 ~for inhibitory couplings! for reasons of
conformity.

On the other hand, the detailed analysis ofI1 and I2
following in the next section requires one to distinguish b
tween excitatory and inhibitory coupling. In each case,
first heuristically describe the temporal development ofS to
motivate the mathematical notation of the dynamics that w
follow afterwards. For brevity, we denote a spike originati
from oscillatorA as ‘‘spikeA’’ and the oscillatorA simply
as ‘‘A.’’ Each domain will be partitioned into smaller re
gions, which we denote Exn or Inn with successive number
ing for excitatory and inhibitory coupling, respectively.

A. Excitatory couplings, e>0

1. Configuration I1

At t5t2F, spikeB reachesA, and later att5t, spikeA
reachesB. Four cases must be distinguished. Ife is very
high, A crosses threshold immediately~Ex4! while receiving
the spike ofB. If e is still high enough,A reaches threshold
not immediately, but before spikeA can arrive atB ~Ex3!.
Intermediate values ofe only cause spikeA to raiseB in-
stantaneously above threshold~Ex2!. Low values ofe cannot
bring either of the oscillators up to fire immediately aft
absorbing a spike~Ex1!. Because the case distinctions ne
essary for a complete analysis of the time evolution of
system are quite complicated, we use in the following c
sistently a tabular form where the relevant time steps
shown together with corresponding phases of the oscillat
The motivation or justification for the upper limits ofe can
be found in the lines that are marked with an asterisk.

Ex1: e,12 f (F1t) andFP I1:

time t FA FB

0 0 F
t2F t2F→ t

F1(t2F,e)
t F1(t2F,e)1f t1f→

F1(t1F,e),1 (*)

h~F!512@F1~t1F,e!2~F1~t2F,e!1F!#. ~5!
e

e

-
e

ll

-
e
-

re
s.

Since FA(t)>t and FB(t),1, h(F).1211t1F>t
such thath: Ex1°I2øI3. Additionally, the phase differ-
enceDFA,B increases because the phase shiftDFB is larger
than the phase shiftDFA .

Ex2: 12 f (F1t)<e, f (12F)2 f (t2F) andFPI1:

time t FA FB

0 0 F
t2F t2F→ t

F1(t2F,e)
t F1(t2F,e)1F (* ) t1F→

F1(t1F,e)51

h~F!512@12~F1~t2F,e!1F!#5F1~t2F,e!1F.
~6!

h will be h(F).t2F1F5t such thath: Ex1°I2øI3.

Ex3: f (12F)2 f (t2F)<e,12 f (t2F) andFPI1:

time t FA FB

0 0 F
t2F t2F→ t

F1(t2F,e),1 (* )
t2F1 1→0 t1

@12F1(t2F,e)# @12F1(t2F,e)#
t F211 t1F→

F1(t2F,e) F1(t1F,e)51

h~F!5F2@12F1~t2F,e!#. ~7!

Since 12F1(t2F,e).0 (*), h(F),F. This assures tha
h: I1°I1. More precisely,h: Ex3°Ex3øEx4, be-
cause the slope of the lower bound of Ex3 is positive„as can
easily be seen fromd@ f (12F)2 f (t2F)#/dF52 f 8(x)
1 f 8(y).0 with x:512F.t2F5:y.… Intuitively, the do-
mains Ex1 and Ex2 cover higher values ofF and lower
values ofe such that an decrease in phase difference can
map in those regions.

Ex4: 12 f (t2F)<e andFPI1:

time t FA FB

0 0 F
t2F t2F→ t

F1(t2F,e)51
t F t1F→

F1(t1F,e)51

h~F!5F. ~8!
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57 2153DELAY-INDUCED MULTISTABLE SYNCHRONIZATION . . .
h:Ex4°Ex4 with the same initial conditions butA and B
exchanged. Ex4 is a region of marginal stable fixed poin

2. Configuration I2

Two cases have to be considered. Aftert5t, spike A
reachesB, which will fire next. Depending one, B reaches
threshold immediately~Ex6! or later ~Ex5!.

Ex5: e,12 f (F1t) andFPI2:

time t FA FB

0 0 F
t t F1t→

F1(F1t,e),1 (* )

h~F!512$ f 21@ f ~t1F!1e1#2t%. ~9!

As can easily be seen in Eq.~9!, t,h(F),12t, so
h:Ex5°I2.

Ex6: 12 f (F1t)<e andFPI2:

time t FA FB

0 0 F
t t F1t→

F1(F1t,e)51

h~F!5t. ~10!

Thus,h:Ex6°I2.

B. Inhibitory couplings, e<0

1. Configuration I1

A receives spikeB at t5t2F, andB receives spikeA at
t5t. Three cases have to be considered: Depending oe,
none of the oscillators~In1!, one of the oscillators (B, In2!,
or both oscillators (A and B, In3! are reset to the restin
potential f 50. The mechanism of inhibition induces on
more difficulty in our analysis. Due to the fact that the osc
lator with higher amplitudef decreases its phase more th
the oscillator with lower amplitude while receiving a spike,
is possible that the oscillators exchange their position wit
the phase axis.

In1: ueu< f (t2F) andFPI1:

time t FA FB

0 0 F
t2F t2F→ t

F2(t2F,e).0 (*)
t F2(t2F,e)1F t1F→

F2(F1t,e)

h~F!512uDFA,B~t!u

512uF2~t1F,e!2F2~t2F,e!2Fu. ~11!
.

-

n

We can estimate a lower and an upper bound forDFA,B(t)
using the monotony off and relationA4, respectively:

0,F2~t1F,e!2F2~t2F,e!,2F→uDFA,B~t!u,F.
~12!

Thus h:In1°In0 and R(F)5h(F) if DFA,B(t),0. The
phase difference decreases because the absolute value
negative phase shiftDFB is larger than the phase shiftDFA .

In2: f (t2F),ueu, f (t1F) andFPI1:

time t FA FB

0 0 F
t2F t2F→ t

F2(t2F,e)50
t F t1F→

F2(F1t,e).0 (* )

h~F!512uF2~t1F,e!2Fu. ~13!

We can estimate the same lower and upper bounds
F2(t1F,e) as in In1 using relationA6 and the lower
bound ofueu:

0,F2~t1F,e!

,F2„t1F, f ~t2F!…

5 f 21
„f ~t1F!2 f ~t2F!…< f 21

„f ~F1F!2 f ~F2F!…

3~A6!

52F. ~14!

Thush:In1°In0 andR(F)5h(F) if DFA,B(t),0.

In3: f (t1F)<ueu andFPI1:

time t FA FB

0 0 F
t2F t2F→ t

F2(t2F,e)50
t F t1F→

F2(F1t,e)50

h~F!5R~F!512F. ~15!

Thush:In1°In0.

2. Configuration I2

Three cases have to be considered. Att5t, spike A
reachesB. Depending one, B is reset to the resting potentia
~In6! or not ~In4, In5!. The difference between In4 and In
will be clarified in Appendix B.

In4: ueu, f (t1F)2 f (2t) andFPI2:
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time t FA FB

0 0 F
t t t1F→

F2(F1t,e).0 (* )

h~F!512$ f 21@ f ~t1F!2ueu#2t%. ~16!

The consequences of this firemap are discussed in Appe
B, too.

In5: f (t1F)2 f (2t)<ueu, f (t1F) andFPI2:
Same dynamics table as inI2, In4,

h~F!512uF2~t1F,e!2tu. ~17!

FIG. 2. The flow of the dynamics for excitatory couplings. In
tializations inI2 terminate in Ex6~synchronization with phase la
t), whereas initializations inI3 or I1 terminate either inI2, in Ex4
~marginal stable synchronization with phase lag smaller thant), or
remain in ~Ex0-Ex2! if the fixed point in this loop is stable~see
text!.

FIG. 3. The flow of the dynamics for inhibitory couplings. In
tializations in In4 map onto In4~antiphase synchronization!,
whereas initializations in any other region terminate either in~In0-
In1! if e<12 f (t) ~arrow up, in-phase synchronization! or in ~In0-
In3! if e.12 f (t) ~arrow down, synchronization with a phase la
up to t).
ix

Since 0,F2(t1F,e)<F2(2t,e50)52t, uF2(t1F,e)
2tu,t such that h:In5°In0 and R(F)5h(F) if
DFA,B(t),0.

In6: f (t1F)<ueu andFPI2:

time t FA FB

0 0 F
t t t1F→

F2(F1t,e)50

R~F!5h~F!512t. ~18!

h:In6°In5.

IV. CONSTRUCTION OF PHASE DIAGRAMS

Taken together, the firemaps for the different doma
Ex0-Ex6, In0-In6 form a single description of the dynami
of S. This can be represented by flow diagrams shown h
~Figs. 2 and 3!. In the next paragraphs, we explain how t
firemaps work ‘‘together,’’ and which attractors or repello
can be found.

Let us start in domainI2 with excitatory couplings. The
repellor in Ex5* ~Appendix A! drivesF to the bound of this
domain. All initializations out of the Ex5* map ontoF5t
after at most two iterations ofh @Appendices A and D, Eq
~10!#. SinceR(t)5t ~Appendix D!, there exist two stable
fixed points inI2, the first one being atF5t and the second
one atF5h(t). Under these conditions, the oscillators sy
chronize with phase lagt since the two stable fixed point
correspond to each other in the following way such that
pending on the initial conditions, eitherA fires beforeB or B
fires beforeA.

The next domain we discuss isI1. Starting in Ex1,h can
map toI2 or build a loop with Ex0 (I3) @Eq. ~5!#. Sinceh in
Ex0 (I3) does not change the phase difference, whileh in
Ex1 increases it, the~Ex1-Ex0! loop increases the phase di
ference. At some time, the phase difference has been gr
so much thath maps ontoI2 or onto Ex2@if e.12 f (2t)#.
Depending on the behavior ofS in the ~Ex2-Ex0! loop ~see
Appendix C!, it is possible thath maps ontoI2 or Ex3. In
Ex3, the phase difference decreases more and more@Eq. ~7!#
until the domain of marginal stable fixed points Ex4@Eq. ~8!#
is reached. An interesting feature of Ex3 and Ex4 is that e
oscillator fires twice before the other one can fire again. T
can be interpreted such that in one cycle with two spikes
each oscillator, oscillatorA is ‘‘leading,’’ and in the next
cycle, oscillatorB is ‘‘leading.’’ In Fig. 4, we have plotted
an example fort50.2. Throughout our illustrations, we us
for f the standard example of Mirollo and Strogatz@19# with
b53:

f ~F!5
1

b
ln$11@exp~b!21#F%, ~19!

which yields a particularly simple piecewise linear retu
map.

Next, we consider inhibitory couplings where we al
start with the discussion ofI2. It can easily be seen that n
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57 2155DELAY-INDUCED MULTISTABLE SYNCHRONIZATION . . .
domain maps onto In4 but itself@Eqs.~12!–~18!#. In In4 we
find an attractive fixed point~see Appendix B! that synchro-
nizes the oscillators in antiphase. Initializations in In5 a
In6 are mapped byh onto In0 (I3) @Eqs.~17! and~18!#. The
domain In0 (I3) itself builds several loops with In1-In3 (I1)
@Eqs.~11!–~15!#. From Eq.~14! we see that the phase diffe
ence decreases in the~In2-In0! loop. At some time the phas
difference will be so small that ife,12 f (t), h maps onto
In1, and ife>12 f (t), h maps onto In3. Under the~In1-In0!
loop, the phase difference decreases@Eq. ~12! until the oscil-
lators will fire simultaneously; under the~In3-In0! loop, a
domain of marginal stable fixed points is reached, Eq.~15!#
and the phase difference does not change anymore~Fig. 5!.

To summarize our analysis, the general behavior ofS can
be described as follows. With excitatory couplings, the
cillators synchronize with phase lagt such that they are no
able to fire in unison. Inhibitory couplings lead to either i
phase or antiphase synchronization depending on the in
conditions, if the coupling strength is intermediate. If t
coupling is strong, only in-phase synchronization prov
stable. Additionally, marginal stable regimes are found,
only for extremely high parameter values. An other ma
ematical approach@15,16# shows that these results also app
for integrate-and-fire neurons coupled viaa functions.

FIG. 4. ~a! Return mapR for excitatory coupling of strengthe
50.1 with delayt50.2 in the Mirollo-Strogatz model. Two stabl
fixed points lead to asymptotic out-of-phase synchronization w
phase differenceF`5t. ~b! Phase diagram determining th
asymptotic behavior in dependence of the coupling strengthe and
the initial phase differenceF0. Out-of-phase synchronization wit
phase lagt is stable everywhere apart from the upper left corn
where synchronization with phase lag smaller than the delay is
sible. The dashed line denotes the parameter valuee of the particu-
lar return map shown in~a!.
d

-

ial

s
t
-

V. N@2 NEURONS

The evaluation of return maps for more than two neuro
requires an increasing number of case distinctions and is
ficult to manage even ifN.2 is small. Therefore we per
formed computer simulations to uncover the dynamics of
system.

In this section, we present simulations ofN5100 neurons
with phasesF i ,i 51, . . . ,N, either inhibitorily or excitato-
rily coupled with delayt,0.5 and initialized with a uniform
random distribution of initial phases.

We find that with both inhibitory and excitatory cou
plings, the neurons tend to cluster their activities. After a f
firing periods, the oscillators split inNc groups or clusters,
where all of the neurons within the same cluster are synch
nized with phase lagDF50. The groups themselves fir
alternately, thus leading to a frequency in the summed n
work activity that isNc times higher than the individual os
cillator frequency. A noise level ofh is simulated by modi-
fying each phase shiftDF i according to DF i→DF i(1
1h i), whereh i is taken from a Gaussian distribution wit
mean 0 and standard deviationh. Taking existence of noise
into account, we can clearly see an important difference
tween excitatory and inhibitory couplings@compare Fig. 6~a!
with Figs. 7~a!–7~d!#. While the clusters remain stable wit
inhibition, the clusters in an excitatory network begin to d
synchronize and to disappear simultaneously to the em
gence of new clusters. This effect seems to be specific

h

r
s-

FIG. 5. ~a! The return mapR for inhibitory coupling with e
50.1 andt50.2 shows two stable fixed points giving rise to in
phase (F`50) or antiphase (F`5T/2) synchronization. The re-
spective basins of attraction determine the phase diagram~b! as
indicated by the dashed lines for their particular value ofe under
consideration. For intermediate values ofe, the oscillators always
fire simultaneously. Largee leads to marginally stable synchron
zation with phase lagF`<t.
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FIG. 6. ~a! Stroboscopic view on the phasesF i(tk) of N5100
neurons plotted each timetk a fixed reference neuron fires itskth
time. The neurons are inhibitorily coupled with strengthueu50.2
and delayt50.2. The network exhibits multistable clustering a
an increase in the network frequency~in this case by about a facto
of 3). ~b! The average number of stable clusters nearly follow
power lawNc;t21 as a function of the delayt shown here fore
50.2 andN5100.
-
e-
n-
pulselike coupling with instantaneous offset. With random
distributed initial conditions, clusters tend to be of equal si

Additionally, the clustering with inhibition is multistable
This means that we obtain an arbitrary, but limited numb
of synchronous clusters only by initializing the oscillato
with appropriate phases. As an example, we can evoke
two, or three subpopulations with fixed network paramet
of N5100, e520.1, and t50.2 by choosingF i(0), i
51, . . .,100, appropriately. In Fig. 6, the maximal numb
of subpopulations have emerged.

This phenomenon can heuristically be understood by c
sidering the return maps for two neurons. With inhibito
couplings, the fixed point atF50 is stable. All neurons
initialized with a phase being within the basin of attraction
this fixed point will be synchronized in one cluster, neuro
being outside will be repelled. Another cluster, whose ba
of attration also synchronizes all neurons in its neighborho
with zero phase lag, may then emerge in the next interva
the phase axis. This implies that the phase axis is partitio
into intervals of size'2t, each of them being a basin o
attraction for one cluster. Numerous simulations confirm
that this heuristical approach is valid, and we find that
maximum number of clusters roughly follows the power la

Nc'1/2t ~20!

as can be seen in Fig. 6~b!.
Considering excitatory couplings, the first fixed point

F50 is a repellor and the second fixed point atF5t is an
attractor. Imagining two clusters separated from each o
by a phase difference oft, we have two counteracting ten
dencies. One cluster itself is not stable and is likely to d
synchronize, while the other cluster tries to stabilize it. Sy

a

o

FIG. 7. Stroboscopic views on the phases ofN5100 excitatorily coupled neurons plotted as in Fig. 6~a! with e50.2, h50.0005, and
~a!–~c! t50.15, ~d! t50.02. The network exhibits spontaneous synchronization and desynchronization in various forms.~a! and ~b! Two
simulations with the same parameters but different random initializations off i(0) in @0,1#. ~c! This simulation has been initialized with tw
synchronous populations in antiphase.~d! Even if the delay and the noise are very small (t50.02, h5531029), the synchronization
becomes unstable.
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chronization is only possible if the attractive forc
overcomes the repulsive one. The balance between these
forces is often unstable, even small amounts of noise
disturb the clustering@Figs. 7~a!–7~d!#. The average numbe
Nc of clusters cannot be expressed as a simple functio
the delayt @Fig. 10~b!#, and it depends sensitively on th
initial conditions@Figs. 7~a! and 7~c!#.

Very similar phenomena have been observed and a
lyzed by van Vreeswijket al. @15,16# for networks where the
postsynaptic potentials~PSP’s! are modeled bya functions.
An important parameter in@15,16# is the rise timeta of the
a function, which is crucial for the development of synchr
nicity and clustering. This constant determines the time
between the onset of the PSP and its maximum amplitu
introducing arelativedelay similar to theabsolutedelayt in
our analysis.

We suspect that in real biological systems, clustering
pends strongly on the total effective delayteff , which is the
sum of the absolute delayt and the relative delayta'1/a:

teff5t1ta . ~21!

Evidence for this hypothesis is provided by Figs. 10~c!
and 10~d! where we compare simulations with small a
large rise times of the postsynaptic potentials, and with va
ing total delay. By substitutingt with teff , Eq. ~20! is also
valid for a ‘‘smooth’’ coupling, as can be seen in Fig. 10~d!
where all simulations for a wide range of rise times cover
same functional dependency.

VI. CONTINUOUS DESCRIPTION

In the limit of N→` a network of globally coupled neu
rons can be described by the dynamics of a probability d
sity function

r~f,t !5
1

N(
i

d„f2f i~ t !… ~22!

~compare, e.g.,@21,16,4,14#!. The evolution of the amplitude
of one of our model oscillators obeys

d fi

dt
5v0f 8~F!1e(

j
d~ t2t j2t!, ~23!

wheret j , j 51, . . . ,M are the times when the other oscill
tors emit pulses, andv05dF/dt for e50 ~compare with
Sec. II!.

For small individual couplingse we then have

dF i

dt
.v01

e

f 8~F i !
(

j
d~ t2t j2t! ~24!

from which in the limit ofN→` we obtain

dF i

dt
5v0S 11

ē

f 8~F i !
r~0,t2t!D , ~25!
wo
n

of

a-

g
e,

-

-

e

n-

if we assume thatv(0,t)5v(1,t)5v0 ~absorption at thresh
old F50 or absolute refractoriness atF50). From this and
the boundary conditionr(0,t)v(0,t)5r(1,t)v(1,t) then fol-
lows the continuity equation

]r

]t
52

]~rv !

]f
, ~26!

where v5df/dt denotes the drift velocity for 0,f,1.
Note that the stationary~asynchronous! solution is given by
r}1/v, which in general depends onf. An analysis of this
equation forr(f)51 has been presented in@16#.

In our simulations, we concentrated on the dependenc
the solutions of Eq.~26! on the delayt. According to the
periodic boundary conditions wherev is not smooth, we had
to simulate Eq.~26! with an algorithm using nonconstan
discretization steps.

With inhibitory coupling e,0, we find an excellent
agreement with the multistable clustering seen in Fig. 10~a!
~not shown!. With excitatory interactionse.0, we find that
the phase densityr shows a variable number of peaks re
resenting synchronized clusters, although some peaks ha
long tail connecting it with its neighbor@Fig. 8~b!#. This side
effect of excitation can be related to oscillators that diffu
along the phase axis~not shown!. For discrete models, this
has also been seen in simulations@22#. Additionally, we find
clusters emerging and decaying spontaneously as seen i
discrete dynamics.

VII. HODGKIN-HUXLEY NEURONS

The description of the well-known Hodgkin-Huxley neu
ron with its standard parameters can be found in@20#. We

FIG. 8. ~a! Snapshot of the continuous model witht50.2 and
e50.2 att05500T, whereT:51/v0 denotes the firing period with-
out any coupling.~b! Corresponding time evolution of the instant
neous rate. While synchronized clusters lead to a high popula
frequency, the offsets of some clusters indicate subsets of async
nous oscillators.
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simulated the Hodgkin-Huxley neurons in a globally puls
coupled network with delay, where the pulses of the neur
were modeled bya functionsEa(t)

Ea~ t !5H ea2~ t2t!exp@2a~ t2t!# for t.t ~27!

0 otherwise. ~28!

This realistic model shows a behavior similar to integra
and-fire neurons. The clustering that is shown in Fig. 9
multistable and the number of stable clusters increases a
delay decreases~not shown!. Due to the relaxation times o
the ionic currents in the Hodgkin-Huxley neuron, the effe
tive delay cannot be reduced toteff50 such that we were no
able to evoke more than three clusters of neurons. Th
simulations confirmed that this grouping of neurons has to
expected in realistic neuron models and should be rele
for real biological systems as well.

VIII. DISCUSSION

In this paper, we have analyzed the behavior of two pu
coupled oscillators in the presence of delays. While delay
oscillatory systems have been the subject of some prev
work, this inherent property of most biochemical and phy
cal systems has often been neglected or turned out to be
analytically solvable. The analytical treatment of Mirol
et al. @19# is only valid with excitatory couplings withou
delay. If some more biological details such as, e.g., an ab
lute refractory period@23# were added, it becomes questio
able if in-phase synchronization can always be achieved

Our analysis yields two results in this respect. First,
showed that perfect in-phase synchronization is stable o
with inhibitory couplings. The corresponding return map h
two fixed points leading either to in-phase or antiphase s
chronization if the coupling strengthe is intermediate, and to
in-phase or marginal out-of-phase synchronization ife is
large. This consequence of inhibitory couplings has alre
been observed in simulations@24–27,51,52# and analyzed
mathematically@16,51# for neurons coupled via pulses o
finite width. Conclusively, inhibition may be the best choi
to synchronize neurons coupled via substantial delays.

Secondly, excitatory couplings lead to out-of-phase s
chronization where the phase lag between the two oscilla
is proportional to the delay. These findings extend the w
of Mirollo and Strogatz@19#, which showed that withou
delay, in-phase synchronization can be achieved via exc
tory couplings. During the course of this work we were i
formed that a similar, but different analysis@28–30# to ours
@31,14# has been carried out yielding qualitatively simil
results.

Globally coupled populations ofN.2 oscillators show a
variety of new phenomena. With excitatory couplings, t
oscillators synchronize and desynchronize spontaneou
sensitively depending on the initial conditions such as no
delay, phases, and coupling strength. Remembering tha
fixed point for in-phase synchronization of two neurons
unstable, while the fixed point leading to out-of-phase s
chronization is stable, these two counteracting tenden
may be responsible for this interplay between stability a
instability.

Populations coupled with inhibitory weights exhibit mu
-
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tistable phase clustering. The oscillators synchronize wit
several alternately firing groups whose maximal numbe
determined by the delay time via a power law. The em
gence ofN clusters leads to a frequency in the summ
activity of the network that isN times higher than the indi-
vidual oscillator frequency. We think that inhibition may b
one of the key mechanisms for clustering of neuronal activ
in the brain@32,33#. It may also explain the increase in pop
lation frequency found in the hippocampus of rats@34#,
where the network activity exhibits a several times high
frequency than the single neuron.

Nevertheless, the phenomenon of multistable clusterin
well known in the literature. Clustering is also possible if t
single neuron is not driven continuously and does not os
late itself@24#. Our results are therefore consistent with pr
vious work, namely, to the stabilization of synchronizati
by adding inhibitory couplings to an excitatory system@22#,
and to the emergence of a variety of spatiotemporal patte
@35#, but in this framework, they are exclusively the cons
quences of adelayedinteraction.

The generalization of the dynamics ofN coupled oscilla-
tors to arbitrary system sizes by means of a single differen
equation for a phase-density function has been the subje
numerous papers@36–40#. We extended this formalism to
account for delays using a phase-dependent phase velo
which we explicitly derived for the Mirollo-Strogatz neuro
class~see Fig. 8!.

An important condition for this paper was to keep t
model as simple as possible to account for various oscilla
classes, especially for integrate-and-fire neurons. The in
dients~membrane potential concave down, threshold con
tion, and pulselike interaction! are typical for constantly
driven biological neurons@41#. A similar work that subsumes

FIG. 9. Stroboscopic views on the phases ofN550 Hodgkin-
Huxley neurons with inhibitory coupling plotted as in Fig. 6~a!,
with ~a! t'0 and~b! t'0.2. Note that witht'0, only up to three
clusters may emerge due to the ‘‘hidden’’ delays in the ionic co
ductances.
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FIG. 10. Dependence of the number of synchronous clusters on the delay ofN5100 integrate-and-fire neurons~Mirollo-Strogatz-model!
with b50.3. ~a!, ~b! The bold lines show the average number of clustersNc emerging from a random initialization, and the crosses show
number of clusters emerging from an initalization of the oscillator’s phases in an interval of@0,f init#. f init has been increased from 0.0 to 0
in steps of 0.01 and from 0.1 to 1.0 in steps of 0.1. The simulations were performed with an amount of noise equal to a frequency v
of 5%. After the oscillators have been clustered, the noise has been decreased to a finite value in order to see if the oscillators
in a stable configuration.~a! Inhibitory couplings,e520.2. ~b! Excitatory couplings,e50.2. Here, the clustering is not always multistab
~c! Inhibitory couplings,e520.2. The pulses werea functions with rise times of 0.01~boxes!, 0.05~stars!, 0.1 ~crosses!, 0.2 ~diamonds!,
and 0.3~triangles!. ~d! shows the same data as in~c! but plotted in dependence of the effective delayteff instead oft.
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different oscillators in a general framework has been done
Gerstner@42#, and van Vreeswijk@16#. In the more detailed
and somewhat more complex pulse-response model,
chronization can be analyzed analytically@43,44#, and has
been found if the coupling is inhibitory and delays are of t
size of the firing period. If integrate-and-fire neurons a
coupled witha functions that introduce a relative delayta ,
the analysis yields the same results as described in this p
@15,16#.

Certainly, other synchronization mechanisms may e
~see, e.g.,@45#! and more detailed models may exhibit add
tional phenomena, but we believe that despite the simpli
of the model we analyzed, the results are typical for neuro
oscillators @16#. We demonstrate this by the model
Hodgkin and Huxley@20# and show that even at this detaile
biological description level, multistable clustering is a
emergent property of the network dynamics rather than
result of a nonuniform or learned weight structure@46,43#;
and that this phenomenon appears to be quite commo
systems where delays are prevalent and inhibitory coup
is strong~Fig. 10!.

We believe that the mechanisms proposed in this pa
might underlie the synchronization across the two he
spheres of the brain@18# and the synchronous flashing o
fireflies @47#. In this respect, it is amazing that the synchr
nization at species of fireflies having a negative phase s
~‘‘inhibition’’ ! is much more precise than for species usin
positive phase shift~‘‘excitation’’ ! @47#. The frequency cou-
pling found in the hippocampus of rats@34# may also indi-
y
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cate that phase clustering plays an important role in real
logical networks.

Clustering may be useful for applications where seve
combinations of stimuli have to be represented at once. H
multistability is related to the superposition problem@8#, and
can effectively be used for binding features of different o
jects simultaneously together. Another application are syn
chains, where the information transported has to be p
served or even sharpened@48#. These topics have alread
been outlined@49# and will be the subject of our further wor
@50–52#.
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APPENDIX A: FIXED POINT IN Ex5, e>0

The firemap in domain Ex5„with eP@0,e* @ ande*: 51
2 f (2t)… is given by

h~F!:512$ f 21@ f ~F1t!1e#2t%. ~A1!

It is easy to check thath:Ex5°I2 becauset,h(F),1
2t ;(F,e)PEx5. Let Ex5*:5$(F,e)uh(F)PEx5%
where we can iterateh twice becausef „t1h(F)…1e,1.
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We ignore oscillators starting in domain Ex52Ex5*, which
reach the stable fixed point atF5t after at most two itera-
tions of h. With fixed e0,e*, Ex5* is given by the open
interval

Ex5*ue5e0
5]h21~d!,d@ , ~A2!

with d5 f 21~12e0!2t. ~A3!

Starting frome0,e*, it is easy to prove that this interval i
nonempty:

e,12 f ~2t!,

112t2 f 21~12e!,1,

f „112t2 f 21~12e!…,1,

f 21@ f „112t2 f 21~12e!…2e#2t, f 21~12e!2t

h21~d!,d, ~A4!

Modifying the strategy of@36#, we now prove that there ex
ists a unique fixed point ofh in Ex5*. First of all, we show
the following lemma:

Lemma 1: h8(F),21 andR8(F).1 ;FPEx5*.
It suffices to show thath8(F),21, since R8(F)

5h8„h(F)…h8(F). From Eq. ~A1!, we obtain h8(F)5
2 f 218@ f (F1t)1e# f 8(F1t). Since f and f 21 are in-
verses, the chain rule impliesf 8(F1t)5$ f 218@ f (F
1t)#%21. Hence

h8~F!52
f 218@ f ~F1t!1e#

f 218@ f ~F1t!#
. ~A5!

Let u:5 f (F1t). Then Eq.~A5! is of the form

h852
f 218~u1e!

f 218~u!
. ~A6!

By hypothesis, f 219.0 and e.0, so f 218(u1e)
. f 218(u) ;u. Finally, the hypothesis of strict monotonicf ,
thus f 218(u).0, implies thath8,21, as claimed.

Proposition 1:There exists a unique fixed point forR in
Ex5*, and it is a repellor.

The fixed point equation forh is H(F):5F2h(F). It is
easy to check thatH(d).0 andH„h21(d)…,0 @Eq. ~A4!#.
From Lemma 1 we haveH8(F)512h8(F).0. Henceh,
and thereforeR, have a fixed pointF0. SinceR(F0)5F0
andR8(F).1 by Lemma 1, we have

R~F!.F if F.F0 ,
~A7!

R~F!,F if F,F0 .

Hence the fixed point forR is unique, and is a repellor.

APPENDIX B: FIXED POINT IN In4, e<0

The firemaph in In4 is identical to Eq.~A1!. The reason
for the discrimination between In4 and In5 is th
h:In4°In4, which we want to check first. Since
ueu, f ~t1F!2 f ~2t!, ~B1!

domain In4 is given by In4ue5e0
5]a,b@ with a:5 f 21

„ue0u
1 f (2t)…2t and b:512t. First, we show thath(F),1
2t5b:

h~F!512 f 21
„f ~t1F!2ueu…1t

,12 f 21
„f ~2t!…1t with Eq. ~B1!5b. ~B2!

Then, we prove thath(F).a.

h~F!.12 f 21
„f ~1!2ueu…1t512 f 21~12ueu!1t

~B3!

Now, we defineF*: 5 f 21(12ueu). With 15 f 21
„f (F*)

1ueu…, we write Eq.~B3!:

h~F!. f 21
„f ~F* !1ueu…2F* 1t. ~B4!

SinceF* .2t, we can write Eq.~B4! usingA7:

h~F!. f 21
„f ~2t!1ueu…22t1t5a. ~B5!

The interval ]a,b@ is not empty, becausef 21
„f (2t)1ueu…

,1 for all e within In4.
Lemma 2: 0.h8(F).21 and R8(F),1;FPIn4.

Lemma 2 can be shown using the same techniques a
Appendix A. The only difference is that the sign ofe is
negative.

Proposition 2:There exists a unique fixed point forR in
In4*, and it is an attractor.

The fixed point equation forh is H(F):5F2h(F). It is
easy to check thatH(b).0 andH(a),0.

H~a!5 f 21
„ueu1 f ~2t!…2t2h@ f 21

„ueu1 f ~2t!…2t#

5 f 21
„ueu1 f ~2t!…21

, f 21~1!2150, ~B6!

H~b!512t211 f 21
„f ~12t1t!2ueu…2t5 f 21~12ueu!

22t. f 21
„1211 f ~2t!…22t50. ~B7!

From Lemma 1 we haveH8(F)512h8(F).0. Henceh,
and thereforeR, have a fixed pointF0. SinceR(F0)5F0
andR8(F).1 by Lemma 1, we have

R~F!.F if F,F0 ,
~B8!

R~F!,F if F.F0 .

Hence the fixed point forR is unique, and is an attractor.

APPENDIX C: FIXED POINT IN Ex2, e>0

The only domain where we cannot determine the po
tions and stability of fixed points whithout explicitly know
ing the functionf is Ex2. Nevertheless, we prove that fixe
points in Ex2 always exist and derive sufficient conditio
for their stability.

Lemma 3:;tP]0,0.5@ ,;FP#0,t@'eF(t,F) such that
@eF(t,F),F#PEx2 andR(F)5F.

First of all, we choose
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eF~t,F!:5 f ~122F!2 f ~t2F!. ~C1!

Then we have to prove that~a! @eF(t,F),F#PEx2 and~b!
R(F)5F.

~a! It can easy be seen that

eF5 f ~122F!2 f ~t2F!. f ~122F12F!

2 f ~t2F12F! ~A5!

512 f ~t1F!5e l ~C2!

and

eF5 f ~122F!2 f ~t2F!, f ~12F!2 f ~t2F!5eu ,
~C3!

wheree l andeu denote the lower and upper bounds of Ex
respectively.

~b! The dynamics starts in Ex2 changing to Ex0 such t
R is given byR(F)5hEx0@hEx2(F)#:

R~F!512hEx2~F!512F1„t2F,eF~t,F!…2F

due to Eq.~16!

512 f 21
„f ~t2F!1 f ~122F!2 f ~t2F!…2F

512112F2F5F. ~C4!

We conclude with a remark on the stability of the fixe
points in Ex2. From Eq.~16!, it follows that

R~F!.F if e,eF ,
E

e

M

-

al

p

,

t

~C5!
R~F!,F if e.eF .

Obviously, all initializations ‘‘above’’ or ‘‘below’’ the func-
tion ~C1! lead to a decrement or an increment in the ph
difference, respectively:

]eF~t,F!

]F
,0 ~F is an attractor!.

]eF~t,F!

]F
.0 ~F is a repellor!. ~C6!

APPENDIX D: R„t…5t FOR 0<e<12F „2t…

It suffices to show thath(t)°Ex6 sinceh(F)5t;F
PEx6. Sincee,12 f (2t), the relationF*: 5 f 21(12e)
.2t holds true, and it follows fromA7 that

f 21
„f ~F* !1e…2F* . f 21

„f ~2t!1e…22t. ~D1!

Thus we can estimate a lower bound forh(t) using Eq.
~D1!:

h~t!512 f 21
„f ~2t!1e…1t @Eq. ~9!#

.11F* 2 f 21
„f ~F* !1e…22t1t @Eq. ~D1!#

5 f 21~12e!2t. ~D2!

The conditione.12 f (t1F) ~lower bound of Ex6! can be
transformed into a condition forF, F. f 21(12e)2t,
which is also true forh(t) as can be seen in Eq.~D2!. There-
fore, h(t)°Ex6.
e
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